

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: http://www.elsevier.com/locate/aob

Effects of Streptococcus thermophilus on volatile sulfur compounds produced by Porphyromonas gingivalis

Sung-Hoon Lee, Dong-Heon Baek*

Department of Oral Microbiology and Immunology, College of Dentistry, Dankook University, 29 Anseo, Dongnam-gu, Cheonan, Seoul, Republic of Korea

ARTICLE INFO

Article history: Accepted 16 July 2014

Keywords: Halitosis Streptococcus thermophilus Porphyromonas gingivalis

ABSTRACT

Halitosis as oral malodour is an unpleasant odour caused by volatile sulfur compounds (VSCs). VSCs are produced primarily by anaerobic bacteria that abundantly produce proteinase as trypsin-like enzyme. General therapies, such as mouthwash and plaque control, do not provide a continuous effect on oral halitosis. Streptococcus thermophilus is a probiotic bacterium that is beneficial for human health. The aim of this study was to evaluate the effect of S. thermophilus on Porphyromonas qinqivalis-producing VSCs and to analyze the inhibitory mechanism of halitosis. P. gingivalis was cultured with or without S. thermophilus, and the emission of VSCs from the spent culture medium was measured by gas chromatography. In order to analyze the inhibitory effect, the antibacterial activity of S. thermophilus against P. qinqivalis was assessed. After the spent culture medium or whole bacterial of S. thermophilus was mixed with the spent culture medium of P. gingivalis, VSCs were again measured by gas chromatograph. When S. thermophilus and P. gingivalis were co-cultivated, VSCs were present at a lower level than those of single-cultured P. qinqivalis. S. thermophilus inhibited growth of P. gingivalis, and the whole bacteria and the spent culture medium of S. thermophilus reduced emission of VSCs gas. S. thermophilus may reduce oral malodour by inhibition of P. qinqivalis growth and neutralizing VSCs with their metabolites or themselves. © 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Halitosis is known as bad breath, oral malodour or fetor oris. Temporary halitosis is caused by consumption of foods or drinks. Persistent malodour is mainly due to metabolites of oral microorganisms.¹ Persistent malodour occurs mainly by production of volatile sulfur compounds (VSCs) from putrefaction of proteinaceous substrates.^{2,3} In the oral cavity, putrefaction of proteins is mainly due to anaerobic gramnegative bacteria, such as *Porphyromonas gingivalis*, *Tannrella*

forsythia and Treponema denticola.^{2,4,5} These three bacteria as periodontopathogens have a characteristic of benzoyl-D,L-arginine-naphthylamide (BANA)-positive bacteria by secretion of trypsin-like enzyme⁶, by which the periodontopathogens can produce large amount of hydrogen sulfide (H₂S), methyl mercaptan (CH₃SH) and dimethyl sulfide ((CH₃)₂S) from methionine and cysteine in serum protein.⁷ Until now, halitosis has typically been treated with mechanical therapy like dental floss and mouth rinse with chemical agents for reduction of VSC.^{1,3} Recently, improvement of halitosis using Streptococcus salivarius K12 has been explored.^{8,9}

^{*} Corresponding author. Tel.: +82 415501997. E-mail address: micro94@gmail.com (D.-H. Baek). http://dx.doi.org/10.1016/j.archoralbio.2014.07.006 0003–9969/© 2014 Elsevier Ltd. All rights reserved.

Streptococcus thermophilus is a probiotic, gram-positive and facultative anaerobe. It is used in preparation of homemade yogurt. ¹⁰ S. thermophilus is beneficial on gastrointestinal health by producing its exopolysaccharide or bacteriocin. ^{11,12} S. thermophilus showed antibacterial activity against oral Streptococci such as S. mutans, S. oralis and S. sobrinus. ¹³ Furthermore, S. thermophilus adheres to tooth-like surfaces such as hydroxyapatite with casein-containing dairy products, and comparatively inhibits the attachment of S. mutans and S. sobrinus. Thus, S. thermophilus has been considered to prevent dental caries. ¹⁴ However, the effect of S. thermophilus on provocation of oral malodour by periodontopathogens has not been investigated.

The purpose of this study was to evaluate the effect of S. thermophilus on emission of P. gingivalis-producing VSCs and to analyze the inhibitory effect on reduction of VSCs emission.

2. Materials and methods

2.1. Bacterial strain and cultivation

P. gingivalis ATCC 33277 was used for generation of halitosis-related VSCs and cultivated in Brain Heart Infusion broth (BHI; BD bioscience, San Jose, CA, USA) supplemented with hemin (1 μ g/ml) and vitamin K (0.2 μ g/ml) at 37 °C anaerobically. S. thermophilus strain HY2, HY3 HY9012 were donated from Yakult (Korea yakult Com, Gyeonggi, Korea) and cultured with BHI broth at 37 °C in anaerobic chamber (H₂ 5%, CO₂ 10% and N₂ 85%).

2.2. Measurement of volatile sulfur compounds

Since halitosis is mainly caused by VSCs such as hydrogen sulfide, methyl mercaptan and dimethyl sulfide, the level of the compounds was measured from the spent culture medium of P. gingivalis after treating or non-treating with various cell densities of S. thermophilus. P. gingivalis was cultivated in the presence or absence of S. thermophilus at 37 °C for 36 h. Each bacterial suspension (1 ml) was transferred to a new 50 ml conical tube and then vortexed for 30 s followed by measurement of VSCs with Oral Chroma™ gas chromatograph (FIS Inc., Itami, Hyogo, Japan). In order to investigate the inhibitory mechanism of VSCs, each P. gingivalis and S. thermophilus were cultivated and then the spent culture medium and whole bacteria were separated by centrifugation at $7000 \times g$ for 10 min at 4 $^{\circ}$ C. The supernatants (1 ml) were transferred into fresh 15 ml conical tubes. The spent culture medium of P. gingivalis was mixed with various volume of the spent culture medium or whole bacteria of S. thermophilus in a 50 ml conical tube and incubated at room temperature for 5 min. VSCs were collected in 5 ml of gas above the mixed solution using 10 ml syringe and measured the level by gas chromatograph.

2.3. Antibacterial activity of S. thermophilus against P. gingivalis

Since S. thermophilus produces a bacteriocin, the antibacterial activity of S. thermophiles against P. gingivalis was evaluated. Susceptibility assay was performed according to the methods

of Clinical Laboratory Standard Institute (CLSI). Briefly, 180 μ l of fresh BHI broth including hemin (1 μ g/ml) and vitamin K (0.2 μ g/ml) was dispensed in each well of a 96-well polystyrene plate (SPL Lifescience, Gyeonggi, Korea), and then 180 μ l of the spent culture medium of two species was added to the first row of the plate. Two-fold serial dilutions were made using a multi-channel micropipette. P. gingivalis was counted by Petroff–Hasser bacteria counter (Hausser Scientific, Horsham, PA, USA) and then diluted to 3×10^6 cells/ml with BHI broth including hemin (1 μ g/ml) and vitamin K (0.2 μ g/ml). The bacterial suspensions (20 μ l; 6×10^4 cells) were inoculated in each well. The plates were incubated at 37 °C in anaerobic chamber for 36 h and the optical density was measured at 660 nm using an ELISA reader.

2.4. Co-cultivation of P. gingivalis and S. thermophilus

Bacterial co-cultivation was carried out according to the method described by Lee and Baek ¹⁵ P. gingivalis and S. thermophilus were co-cultured using Millicell cell culture insert (Millipore, Billerica, MA, USA). BHI broth was mixed with hemin and vitamin K and then dispensed in two new tubes. P. gingivalis and S. thermophilus were inoculated into each tube. After hanging Millicell cell culture insert in a well of 12-well plate, P. gingivalis and S. thermophilus were inoculated in the apical and basolateral side, respectively. Contamination of each bacterium in the separating chamber was investigated by observation using a microscope, and P. gingivalis colonies were counted after plating on BHI agar plate.

2.5. Statistical analysis

Statistically significant differences were analyzed by Mann–Whitney U-test using SPSS ver. 10 (SPSS Inc., Chicago, IL). P-values <0.05 were considered statistically significant.

3. Results

3.1. Effect of S. thermophilus on the VSCs-producing P. gingivalis

P. gingivalis produces halitosis-associated VSCs using proteolytic enzyme. The effect of S. thermophilus on VSC production of P. gingivalis was investigated. When P. gingivalis was cocultured with S. thermophilus, the level of hydrogen sulfur, methyl sulfide and dimethyl sulfide were reduced in the presence of S. thermophilus (Fig. 1). Especially, methyl mercaptan was decreased by 90% in the present of S. thermophilus (Table 1).

3.2. Antibacterial activity of S. thermophilus against P. gingivalis

To investigate the correlation of VSCs reduction and growth inhibition of P. gingivalis, antibacterial activity of S. thermophilus against P. gingivalis was examined according to CLSI. The spent culture medium of S. thermophilus were prepared and tested the antibacterial activity against P. gingivalis. The spent culture medium of S. thermophilus strain HY2, HY3 and HY9012

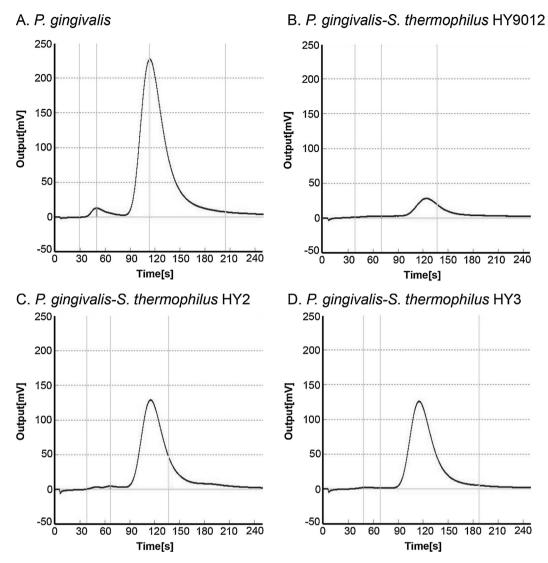


Fig. 1 – Reductive effect of S. thermophilus on oral malodour by P. gingivalis. P. gingivalis (1 \times 10⁷ cells) was cultivated in the presence or the absence of S. thermophilus (1 \times 10⁷ cells), and then gaseous VSCs was collected using syringe above the bacterial suspensions. The level of gaseous VSCs was measured by gas chromatograph (Oral chromaTM). The level of VSCs was expressed with histogram.

exhibited antibacterial activity at the concentration of 25%, 50% and 50%, respectively (Fig. 2A). Furthermore, when S. thermophilus and P. gingivalis were co-cultivated using Millicell culture insert, S. thermophilus significantly inhibited growth of P. gingivalis (Fig. 2B).

3.3. Inhibition of VSCs emission by whole bacteria and metabolites of S. thermophilus

Finally, it was investigated whether the reduction of VSCs was derived by growth inhibition of P. gingivalis or by other

Samples		Volatile sulfur compounds (ppb)		
		H ₂ S	CH₃SH	(CH ₃) ₂ S
P. gingivalis	None	52.83 ± 3.48	2150.17 ± 118.15	47.67 ± 10.19
	+S. thermophilus HY2	$\textbf{17.83} \pm \textbf{4.11}$	136.17 ± 28.50	20.67 ± 5.27
	+S. thermophilus HY3	$\textbf{20.17} \pm \textbf{4.16}$	213.17 ± 41.89	24.50 ± 3.44
	+S. thermophilus HY9012	9.67 ± 1.03	40.33 ± 6.21	15.83 ± 2.78

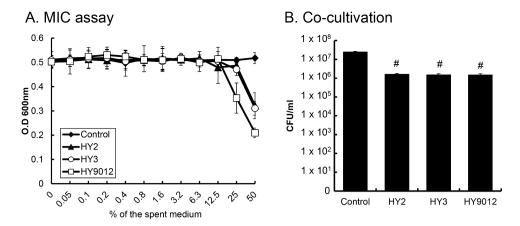


Fig. 2 – Antibacterial activity of S. thermophilus against P. gingivalis. After cultivation of probiotics, the spent culture media were collected by centrifugation. P. gingivalis was incubated with the spent culture medium of S. thermophilus in the various concentrations (A). In another experiment, P. gingivalis (1×10^7 cells) was co-cultivated with or without S. thermophilus (1×10^7 cells) using Millicell culture inert (B). The growth of P. gingivalis were measured by spectrophotometer at 600 nm. The experiments were performed in triplicate and the representative data are shown. Statistically significant compared with untreated control bacteria (p < 0.05). Control group was treated with fresh BHI medium.

mechanism. After cultivating S. thermophilus, the spent culture media and whole bacteria of S. thermophilus were separated, and then each preparations was mixed with the spent culture medium of P. gingivalis. Gaseous VSCs were significantly lower in the mixture with two conditions as the spent medium and whole bacteria of S. thermophilus than the spent culture medium of P. gingivalis (Fig. 3 and 4).

4. Discussion

Temporary oral malodour is caused by consumption foods or drinks, and is improved by mouth rinse and tooth brushing. However, persistent malodour can be induced by metabolites of oral bacteria and is not easily remedied by mechanical or chemical treatment. Furthermore, approximately 80% of halitosis is caused by microbial putrefaction of oral substrates. ¹⁶

The mechanical or chemical means of persistent halitosis are often transient improvement because of continuous growth of oral bacteria. For the reason, probiotics have been explored for the relief halitosis. Probiotics can stimulate host immune systems and inhibit host-pathogen contact by occupying potential pathogen colonization sites and antibacterial activity. In oral bacteria, periodontopathogens such as P. gingivalis, T. denticola and T. forsythia produce trypsin-like proteases, by which the periodontopathogens produce volatile sulfur compounds (VSCs) including hydrogen sulfide, methyl mercaptan and dimethyl sulfide. These VSCs contribute to persistent halitosis.

S. thermophilus is a probiotic bacterium, which provides beneficial effect on gastrointestinal health by its exopolysaccharide or bacteriocin, and which protects dental caries by growth inhibition and binding inhibition of cariogenic bacteria. 9,11,13 However, their roles have not completely been

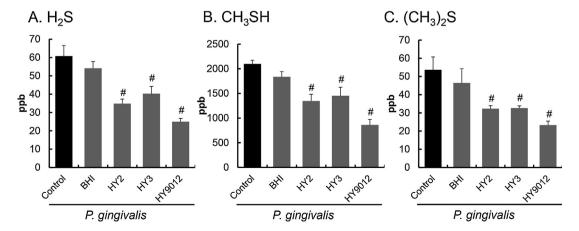


Fig. 3 – The effect of the spent culture medium of S. thermophilus on gaseous VSCs emission. The spent culture medium of P. gingivalis was mixed with the spent culture medium of S. thermophilus. The level of VSCs was measured by gas chromatograph (Oral chromaTM). The experiments were performed in triplicate and the representative data are shown. **
Statistically significant compared with untreated control bacteria (p < 0.05).

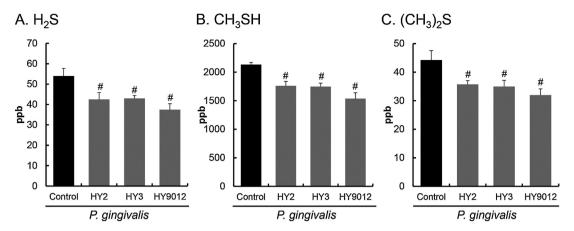


Fig. 4 – The effect of whole bacteria of S. thermophilus on VSCs emission. The spent culture medium of P. gingivalis was mixed with whole bacteria of S. thermophilus (1×10^7 cells). The level of VSCs was measured by gas chromatograph (Oral chromaTM). The experiments were performed in triplicate and the representative data are shown. # Statistically significant compared with untreated control bacteria (p < 0.05).

understood in oral health, especially in halitosis. This study evaluated the effect of S. thermophilus on emission of P. gingivalisproducing VSCs and analyzed the inhibitory mechanism.

When P. gingivalis and S. thermophilus were co-cultivated, the level of VSCs was reduced in the presence of S. thermophilus. Therefore, to analyze the inhibitory effect on reduction of VSCs emission, antibacterial activity against P. gingivalis and capturing VSCs of S. thermophilus were investigated. In study using the spent culture medium of S. thermophilus, antibacterial activity against P. gingivalis showed at high concentration of the spent culture medium with strain differences. Also, S. thermophilus inhibited growth of P. gingivalis in a co-culture system. The difference of the antibacterial activity that was evident may reflect differences of culture-conditions. Another reason may be that P. gingivalis can inhibit the activity of antibacterial agents of S. thermophilus or has weak resistance for the antibacterial agent.

We evaluated whether the reduction of VSCs was derived from growth inhibition of P. gingivalis or by other mechanism. After the spent culture medium of P. gingivalis and S. thermophilus were mixed, the level of emitted VSCs was measured using Oral ChromaTM gas chromatograph. The mixed spent medium exhibited lower level of VSCs than that of P. gingivalis. Since the removal of VSCs is effective for halitosis reduction, various studies have focused on VSC removal using mouth rinse including herbal extract or S. salivarius K12 and on antibacterial activity against VSCproducing bacteria. 9,19-21 Halitosis may be improved by reduction of the bacterial count through antibacterial activity of mouth rinse or S. salivarius K12. Presently, S. thermophilus inhibited the growth of P. gingivalis and the spent culture medium reduced the emission of gaseous VSCs from the spent culture medium of P. gingivalis. Moreover, S. thermophilus also reduced emission of gaseous VSCs from the spent culture medium in the test of whole bacteria. These results are the first report that whole bacteria and the metabolites of S. thermophilus reduce the level of VSCs.

In case of chemical mouth rinse, halitosis cannot be continuously improved because chemical agents quickly flow

into oesophagus by saliva. Thus, S. salivarius K12 has been studied for oral health. S. salivarius K12 is a normal flora in oral cavity and a probiotic bacterium. S. salivarius K12 has antibacterial activity for cariogenic bacteria and periodontopathogens and can integrate into oral biofilm. Mouthwash with S. salivarius K12 was reported to be able to reduce oral malodour by P. gingivalis. For this reason, S. salivarius K12 constantly helps to treat and prevent halitosis. S. thermophilus is also a probiotic bacterium and has the characteristic of S. salivarius K12. It was considered that the difference of two probiotics in application for halitosis may neutralize gaseous VSCs by metabolites or whole bacteria of S. thermophilus. Thus, S. thermophilus may immediately affect oral malodour.

5. Conclusions

Although this study has a simple design, it is the first and meaningful outcome that using S. thermophilus for halitosis treatment is capable of reducing oral malodour by inhibition of P. gingivalis growth and neutralizing VSCs with their metabolites or themselves.

Conflict of interest statement

None declared.

Funding

The present research was conducted by the research fund of Dankook University in 2012.

Competing interests

None declared.

Ethical approval

Not applicable.

Acknowledgments

The present research was conducted by the research fund of Dankook University in 2012.

REFERENCES

- Krespi YP, Shrime MG, Kacker A. The relationship between oral malodor and volatile sulfur compound-producing bacteria. Otolaryngol Head Neck Surg 2006;135(5):671–6.
- Kozlovsky A, Gordon D, Gelernter I, Loesche WJ, Rosenberg M. Correlation between the BANA test and oral malodor parameters. J Dent Res 1994;73(5):1036–42.
- 3. Loesche WJ, Kazor C. Microbiology and treatment of halitosis. Periodontol 2000 2002;28:256–79.
- De Boever EH, De Uzeda M, Loesche WJ. Relationship between volatile sulfur compounds, BANA-hydrolyzing bacteria and gingival health in patients with and without complaints of oral malodor. J Clinl Dent 1994;4(4):114–9.
- Seo T, Cha S, Kim TI, Lee JS, Woo KM. Porphyromonas gingivalis-derived lipopolysaccharide-mediated activation of MAPK signaling regulates inflammatory response and differentiation in human periodontal ligament fibroblasts. J Microbiol 2012;50(2):311–9.
- 6. Loesche WJ, Lopatin DE, Giordano J, Alcoforado G, Hujoel P. Comparison of the benzoyl-DL-arginine-naphthylamide (BANA) test, DNA probes, and immunological reagents for ability to detect anaerobic periodontal infections due to Porphyromonas gingivalis, Treponema denticola, and Bacteroides forsythus. J Clin Microbiol 1992;30(2):427–33.
- Persson S, Claesson R, Carlsson J. The capacity of subgingival microbiotas to produce volatile sulfur compounds in human serum. Oral Microbiol Immunol 1989;4(3):169–72.
- 8. Masdea L, Kulik EM, Hauser-Gerspach I, Ramseier AM, Filippi A, Waltimo T. Antimicrobial activity of Streptococcus salivarius K12 on bacteria involved in oral malodour. Arch Oral Biol 2012;57(8):1041–7.
- Burton JP, Chilcott CN, Moore CJ, Speiser G, Tagg JR. A preliminary study of the effect of probiotic Streptococcus salivarius K12 on oral malodour parameters. J Appl Microbiol 2006;100(4):754–64.

- Crittenden RG, Martinez NR, Playne MJ. Synthesis and utilisation of folate by yoghurt starter cultures and probiotic bacteria. Int J Food Microbiol 2003;80(3):217–22.
- Marcial G, Messing J, Menchicchi B, Goycoolea FM, Faller G, Graciela Fde V, et al. Effects of polysaccharide isolated from Streptococcus thermophilus CRL1190 on human gastric epithelial cells. Int J Biol Macromol 2013;62:217–24.
- Gilbreth SE, Somkuti GA. Thermophilin 110: a bacteriocin of Streptococcus thermophilus ST110. Curr Microbiol 2005;51(3):175–82.
- 13. Petti S, Tarsitani G, Simonetti D'Arca A. Antibacterial activity of yoghurt against viridans streptococci in vitro. *Arch Oral Biol* 2008;53(10):985–90.
- **14.** Comelli EM, Guggenheim B, Stingele F, Neeser JR. Selection of dairy bacterial strains as probiotics for oral health. Eur J Oral Sci 2002;**110**(3):218–24.
- 15. Lee SH, Baek DH. Characteristics of Porphyromonas gingivalis lipopolysaccharide in co-culture with Fusobacterium nucleatum. Mol Oral Microbiol 2013;28(3):230–8.
- van den Broek AM, Feenstra L, de Baat C. A review of the current literature on management of halitosis. Oral Dis 2008;14(1):30-9.
- Freitas M, Tavan E, Cayuela C, Diop L, Sapin C, Trugnan G. Host-pathogens cross-talk, indigenous bacteria and probiotics also play the game. Biol Cell 2003;95(8):503–6.
- **18.** Singh VP, Sharma J, Babu S, Rizwanulla Singla A. Role of probiotics in health and disease: a review. *J Pak Med Assoc* 2013;**63**(2):253–7.
- 19. Roldan S, Winkel EG, Herrera D, Sanz M, Van Winkelhoff AJ. The effects of a new mouthrinse containing chlorhexidine, cetylpyridinium chloride and zinc lactate on the microflora of oral halitosis patients: a dual-centre, double-blind placebo-controlled study. J Clin Periodontol 2003;30(5):427–34.
- Quirynen M, Avontroodt P, Soers C, Zhao H, Pauwels M, Coucke W, et al. The efficacy of amine fluoride/stannous fluoride in the suppression of morning breath odour. J Clin Periodontol 2002;29(10):944–54.
- Roldan S, Herrera D, Santa-Cruz I, O'Connor A, Gonzalez I, Sanz M. Comparative effects of different chlorhexidine mouth-rinse formulations on volatile sulphur compounds and salivary bacterial counts. J Clin Periodontol 2004;31(12):1128–34.
- 22. Burton JP, Wescombe PA, Moore CJ, Chilcott CN, Tagg JR. Safety assessment of the oral cavity probiotic Streptococcus salivarius K12. Appl Environ Microbiol 2006;72(4):3050–3.
- Seow WK, Lam JH, Tsang AK, Holcombe T, Bird PS. Oral Streptococcus species in pre-term and full-term children—a longitudinal study. Int J Paediatr Dent 2009;19(6):406–11.
- 24. Sterer N, Rosenberg M. Streptococcus salivarius promotes mucin putrefaction and malodor production by Porphyromonas gingivalis. J Dent Res 2006;85(10):910–4.